Layering scheme - Bonding system

Framework material

- PMMA denture resins
- Composite
- High-performance polymers BioHPP
- PEEK/PEKK/PAEK
- Titanium
- Non-precious metal alloys
- Zirconium oxide
- Oxide ceramics
- Precious metal alloys (Au, Ag, Pt, Pd)
- eco-alloys
- Lithium (di)silicate
- Veneering and press ceramics

Adhesive

- visio.link
- MKZ Primer
- MKZ Primer + MKZ EM-Activator
- K-Primer

Veneer material (dentine)

- Opaquer combo.lign (for retentions)
- crea.lign opaquer
- combo.lign bonding composite
- crea.lign paste dentine
- crea.lign gel Dentin
- crea.lign paste Enamel/Incisal/Transpa
- crea.lign gel Enamel/Incisal/Transpa

Red-white-customisation with

- crea.lign Gel GUM
- crea.lign Paste GUM

Customisation of crea.lign paste or crea.lign gel with

- crea.lign® Modifier
- visio.paint
- crea.lign® Stain
1. Framework conditioning

Preparation of the adhesive bond of composites:
- Titanium
- Non-precious metal alloys
- Zirconium oxide
- Oxide ceramics

Conditioning of metal and zirconium frameworks (CoCr/NPM/titanium/zirconium):
Sandblast metal frameworks at 3 to 4 bar and zirconium frameworks at max. 2 bar with 110 μm grain aluminium oxide.
The framework must not be cleaned with a steam jet after sandblasting. Any impurities should be removed using alcohol and a clean brush.
Then apply the MKZ Primer and wait until it evaporates.

(Mix 1:1)
Preparation of the adhesive bond of composites:
- Precious metal alloys (Au, Ag, Pt, Pd)
- eco-alloys (low precious metal alloys)

Conditioning of precious metal frameworks (palladium-based/silver-based alloy):
Sandblast metal frameworks with 110 μm grain aluminium oxide at a pressure of 2 to 3 bar. The framework must not be cleaned with a steam jet after sandblasting. Any impurities should be removed using alcohol and a clean brush. Then mix the MKZ Primer and the MKZ EM-Activator at a ratio of 1:1, apply and wait until the mixture evaporates.

Preparation of the adhesive bond of composites:
- Lithium [di]silicate
- Veneering and press ceramics
Also suitable for silanization of surfaces.

Conditioning of oxide ceramic frameworks (zirconium oxide/aluminium oxide/spinel ceramic):
Sandblast the ceramic frameworks with 110 μm aluminium oxide at a maximum pressure of 2 bar or roughen with a diamond grinder. The framework must not be cleaned with a steam jet after sandblasting/grinding! Remove any impurities using alcohol and a clean brush. Then apply the appropriate primer and wait until it evaporates.

Preparation of the adhesive bond of composites:
- PMMA denture resins
- Composite (veneer composites/composite teeth)
- High-performance polymers BioHPP
- PEEK/PEKK/PAEK

Conditioning of plastics (composite/PMMA materials/high-performance polymers such as BioHPP):
Sandblast the plastic/plastic framework with 110 μm grain aluminium oxide at a pressure of 2 to 3 bar. The framework must not be cleaned with a steam jet after sandblasting. Any impurities should be removed using alcohol and a clean brush. Then apply a thin coating of visio.link and cure for 90 seconds in a light polymerisation device (wavelength range 370 nm - 400 nm). The conditioned area should have a silk-matte finish after light curing. This shows that the layer thickness is perfect.
2. Layering instructions / Customisation

Standard layering

1. The neck of the tooth is coated with the dentine mass A3.5 or beige modifier – one degree darker than the subsequent tooth colour.

2. The body of the tooth and mamelons are coated with the dentine mass A3.

3. Almost the entire edge is built up with Enamel E2.

4. The form of the cutting edge is completed with Incisal opal.
Standard layering

1. Sandblast the metal framework with a pressure of 3 to 4 bar with 110 µm aluminium oxide. Do not steam blast, and do not blast with compressed air.

2. Apply MKZ primer with a clean single-use brush and allow to evaporate.

3. For mechanical retentions, the dual-hardening combo.lign opaquer should be applied as a first layer (wash opaquer).

4. Apply crea.lign opaquer.

5. The body of the tooth is coated with crea.lign paste A3, the neck of the tooth with A3.5.

6. The edge is coated with Enamel E2.

7. Apply crea.lign Modelling Liquid to reduce the dispersion layer. Remove the remaining dispersion layer with crea.lign surface cleaner.

8. The veneer finished and polished with the visio.lign Toolkit.
2. Layering instructions / Customisation

Customised layering

1. The neck of the tooth is coated with the dentine mass A3.5 or beige modifier – one degree darker than the subsequent tooth colour.

2. The body of the tooth and mamelons are coated with the dentine mass A3.

3. Add thin enamel cracks using visio.paint ebony.

4. Place alternating layers of Incisal blue and Incisal rose over the mamelons.

5. Apply Incisal blue in a mesial and distal direction from the cutting edge.

6. The entire edge is built up with Enamel E2.
Customised layering

1. Coat the body of the tooth with crea.lign paste A3.

2. Coat the neck area with crea.lign A3.5. Apply visio.paint for special effects, such as enamel cracks.

3. Coat with alternating layers of crea.lign Incisal blue and rose.

4. Incisal blue is applied in a mesial and distal direction.

5. The cutting edge is completed with Enamel E2.

6. Apply crea.lign Modelling Liquid to reduce the dispersion layer and polymerise. Remove the remaining dispersion layer with crea.lign surface cleaner.

7. The veneer finished and polished with the visio.lign Toolkit.
2. Layering instructions / Customisation

Pronounced customised layering

1. The neck of the tooth and the body of the tooth with mamelons are coated with the dentine mass A3.

2. Dark contrasts are ground into the neck area with orange Stains and brown Stains, which is also mixed with visio.paint ebony.

3. Add thin cracks using visio.paint ebony.

4. Marginal ridges are built up with Incisal universal.

5. Place Incisal blue over the mamelons and on the marginal ridges.

6. Complete the cutting edge area with Incisal rose.

7. Complete the marginal ridge with crea.lign Transpa Clear in a distal direction and laminate the veneer.
Pronounced customised layering

1. Wash opaquer, dual-hardening combo.lign opaquer on BioHPP copings.

2. 11 BioHPP® copings, 21 NPM copings.

3. Wash opaquer, dual-hardening combo.lign opaquer on NPM copings.

4. No colour variation discernible, despite the use of different framework materials.

5. Natural aesthetics
2. Layering instructions / Customisation

neo.lign plastic tooth

1. Abrade and sandblast the neo.lign full tooth down to the dentine.
2. Then apply visio.link thinly and polymerise.
3. crea.lign Incisal blue is applied in a mesial and distal direction.
4. crea.lign Transpa emphasises the mamelons.
5. The incisal area is completed with crea.lign Enamel.
6. Apply crea.lign Modelling Liquid to reduce the dispersion layer and polymerise. Remove the remaining dispersion layer with crea.lign surface cleaner.
7. Plastic tooth finished and polished with the visio.lign Toolkit.

AFTER

BEFORE
Milled plastic crown (monolithic)

1. Crown conditioned according to the instructions on p. 3.

2. The crown is coated thinly with visio.link.

3. The crown is painted on the surface with visio.paint stains.

4. The visio.paint stains can be thinned with crea.lign Modelling Liquid, in order to create smooth transitions.

5. The crown is now covered with crea.lign Transpa Clear, in order to protect the paint from wear and plaque accretion.

6. Apply crea.lign Modelling Liquid to reduce the dispersion layer and polymerise. Remove the remaining dispersion layer with crea.lign surface cleaner.

7. The crown was finished and polished to a high gloss with the visio.lign Toolkit.

AFTER

BEFORE
3. Corrections

1. Sandblast or roughen with coarse diamond, do not steam blast, do not blast with compressed air.

2. Apply visio.link thinly.

3. Apply crea.lign to correct the form of the tooth.

4. Processing with the visio.lign Toolkit

1. Process the surface with the mills from the visio.lign Toolkit.

2. The transition to the framework material and the veneer is smoothed using the rubber lens.

3. Pre-polishing is carried out using a goat hair brush and Acrypol polishing paste.
Apply crea.lign Modelling Liquid to reduce the dispersion layer. Remove the remaining dispersion layer with crea.lign surface cleaner.

The veneer finished with the visio.lign Toolkit.

High-gloss polishing is carried out using a cotton buffing wheel and Abraso Starglanz.

SURFACE ROUGHNESS

Thanks to the visio.lign Toolkit and the polishing strategy outlined above, surface roughnesses of the crea.lign composite of only 0.024 μm (Ra value of crea.lign) and 0.030 μm (Ra value of crea.lign paste) can be achieved.
5. Red-white-customisation layering instructions

Layering instructions crea.lign Gel GUM

The bone is represented with beige.

The effect of depth is achieved with lila. Lila is spread from the mucolabial fold towards the teeth.

The layers that were previously applied are coated with pink.

The alveolar sockets are accentuated with rose.

Well perfused areas are accentuated with red.

Light is applied to the gingival margin.

The entire surface is sealed with transpa.
Layering instructions crea.lign Paste GUM

1. Use Paste PO to contour the marginal area.
2. The alveolar sockets are built up with Paste PL.
3. Use light to apply the gingival margin.
4. The effect of depth is achieved with lila.
5. Well perfused areas are accentuated with red.
6. The entire surface is sealed with transpa.
6. Polymerisation times and equipment

6.1 bre.Lux PowerUnit 2

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product name</th>
<th>bre.Lux LED N2 (hand lamp)</th>
<th>bre.Lux PowerUnit2 (basic unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Partial polymerisation (fixation/ partial curing)</td>
<td>Intermediate polymerisation (intermediate curing of individual layers)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[s]</td>
<td>[%]</td>
</tr>
<tr>
<td>visio link</td>
<td>N/A</td>
<td>30</td>
<td>N/A</td>
</tr>
<tr>
<td>combo.lign bonding composite</td>
<td>30</td>
<td>N/A</td>
<td>20 / 50 %</td>
</tr>
<tr>
<td>crea.lign gel</td>
<td>15</td>
<td>15</td>
<td>20 / 50 %</td>
</tr>
<tr>
<td>crea.lign paste</td>
<td>15</td>
<td>15</td>
<td>20 / 50 %</td>
</tr>
<tr>
<td>combo.lign Opaker</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>crea.lign Opaker</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>visio paint</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>crea.lign Stains</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ropak UV</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ropak Compact opaquer UV</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ropak Compact opaquer tooth-coloured UV</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>compoForm UV</td>
<td>15</td>
<td>N/A</td>
<td>20 / 50 %</td>
</tr>
<tr>
<td>Troy material UV</td>
<td>N/A</td>
<td>N/A</td>
<td>40 / 50 %</td>
</tr>
<tr>
<td>Die varnish, light-curing</td>
<td>N/A</td>
<td>30</td>
<td>20 / 50 %</td>
</tr>
<tr>
<td>SERACOL UV</td>
<td>N/A</td>
<td>15</td>
<td>N/A</td>
</tr>
<tr>
<td>Qu-connect</td>
<td>N/A</td>
<td>30</td>
<td>N/A</td>
</tr>
<tr>
<td>Palamex XL</td>
<td>N/A</td>
<td>N/A</td>
<td>40 / 50 %</td>
</tr>
<tr>
<td>Shofu</td>
<td>Solidex</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>GC</td>
<td>Gradia</td>
<td>15</td>
<td>N/A</td>
</tr>
<tr>
<td>Wegold</td>
<td>S-Lay</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>VITA</td>
<td>VITA VM LC PRE OPAQUE / VITA VM LC OPAQUE PASTE</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>VITA</td>
<td>VITA VM LC OPAQUE Pulver</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>VITA</td>
<td>VITA VM LC Composite</td>
<td>30</td>
<td>N/A</td>
</tr>
<tr>
<td>Degudent</td>
<td>Degudent in joy</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes:
- * In case of one order only.
- ** Only apply opaquer in two coats.
- [1] For UV tray material, upper and lower side each 1 x 180 s.
- [2] For pontics, layer thickness up to max. 2 mm.
- (iProg) Individual programming necessary. See new parameters, including the bonding of prefabricated wax parts. Please create an individual programme with 50% luminous power without step function (heat reduction!)

The polymerisation times are guide values for intact devices. Individual programmes: Additional temperature control is possible by switching off the step function (heat stiffness) and reducing the luminous power (1% value / 50% corresponds to old bre.Lux). If necessary, the curing times can be increased proportionally.

The hand lamp can be used as an alternative to the bre.Lux PowerUnit 2 for partial or intermediate polymerisation. The final curing is always done using the bre.Lux PowerUnit 2!

7.2 Shade combination tables

<table>
<thead>
<tr>
<th>Enamel</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A3.5</th>
<th>A4</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>BL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td></td>
</tr>
</tbody>
</table>

* All crea.lign Gel compounds can be seamlessly combined with all crea.lign Paste compounds.
6.2 Other suitable light polymerisation devices

Polymerisation times for the visio.lign system components visio.link, combo.lign and crea.lign

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product name</th>
<th>Wavelength [nm]</th>
<th>Polymerisation times in seconds [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>visio.link</td>
</tr>
<tr>
<td>bredent</td>
<td>bre.Lux PowerUnit 2</td>
<td>370 - 500</td>
<td>90 s</td>
</tr>
<tr>
<td>Dentsply</td>
<td>Triad 2000</td>
<td>400 - 500</td>
<td>180 s</td>
</tr>
<tr>
<td>Degudent</td>
<td>Eclipse</td>
<td>k.A.</td>
<td>60 s</td>
</tr>
<tr>
<td>Heraeus Kulzer</td>
<td>Dentacolor XS, Uni XS, Heraflash</td>
<td>320 - 520</td>
<td>90 s</td>
</tr>
<tr>
<td>GC</td>
<td>Labolight LVIII</td>
<td>380 - 490</td>
<td>120 s</td>
</tr>
<tr>
<td>Ivoclar Vivadent</td>
<td>Targes Power Ofen, Lumina 100</td>
<td>400 - 580</td>
<td>240 s</td>
</tr>
<tr>
<td>Schütz Dental</td>
<td>Spectra 200</td>
<td>310 - 500</td>
<td>120 s</td>
</tr>
<tr>
<td>Shofu Dental</td>
<td>Solidlite</td>
<td>400 - 500</td>
<td>90 s</td>
</tr>
<tr>
<td>Kuraray Dental</td>
<td>CS 110</td>
<td>k.A.</td>
<td>120 s</td>
</tr>
<tr>
<td>Hager & Werken</td>
<td>Speed Labolight</td>
<td>320 - 550</td>
<td>90 s</td>
</tr>
<tr>
<td>3M ESPE</td>
<td>Visio Beta</td>
<td>neu: P1 - P4</td>
<td>> 240 s (P2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alt: U0 - U3</td>
<td>420 s (U1, U3)</td>
</tr>
</tbody>
</table>

Notes:
* Manufacturer’s data
n/a No information

7. Layer thickness and shade combination tables

7.1 Polymerisation times for specific layer thicknesses

<table>
<thead>
<tr>
<th>Material</th>
<th>max. layer thickness [mm]</th>
<th>bre.Lux PowerUnit 2 polymerisation times in seconds [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intermediate polymerisation (intermediate curing of individual layers)</td>
</tr>
<tr>
<td>crea.lign Enamel</td>
<td>1 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>crea.lign Incisal</td>
<td>1 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>crea.lign Transpa clear</td>
<td>1 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>crea.lign Dentin</td>
<td>1 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>crea.lign Modifier</td>
<td>1 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>crea.lign GUM</td>
<td>1 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>crea.lign Stains</td>
<td>0.3 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>visio.paint</td>
<td>0.1 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>30% visio.paint mixed with crea.lign</td>
<td>0.3 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>crea.lign paste</td>
<td>2 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>combo.lign</td>
<td>2 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>crea.lign Opaker</td>
<td>0.1 mm</td>
<td>180 s</td>
</tr>
<tr>
<td>combo.lign Opaker</td>
<td>0.1 mm</td>
<td>180 s</td>
</tr>
</tbody>
</table>

The transparent crea.lign opaquer is suitable for pre-coloured frameworks, e.g. zirconia.
Advantages

Reliable polymerisation
• all light waves available
 = maximum penetration
 = top quality

Unsurpassed polymerisation speed
• 72 lights + full range +
 rotary plate + Light-Tray

Reliability
• Careful and gradual increase of luminous power
• Temperature control 45 °C - 55 °C - up to 65 °C possible for individually adjustable programs
• Overheat protection
• Automatic deactivation of the light with acoustic signal at the end of the program

Long service life of the LED lights
• 20,000 operating hours or 12 years

Ease of use
• Easy and fast access to programs
• Programmable to satisfy individual requirements
• Spacious drawer
• Compact and extremely silent unit

Technical data
bre.Lux PowerUnit 2 Basic unit
- U: 100 - 240 VAC
- P: 130 W
- Frq: 50 / 60 Hz
- Fuse: T 2.0 A
- Light range: 370 - 500 nm

bre.Lux PowerUnit 2 bre.Lux LED N2
- Full Range System
- Hand lamp with FlexHolder

Technical data
hand lamp
- U: 5 VAC
- P: 5 W
- Light range: 370 - 500 nm
- Plug-in power unit - hand lamp
- U: 100 - 240 VAC
- P: max. 15 W
- Frq: 50 / 60 Hz
- Output: 5 V / 3 A

"Unleash the power of light"
more about bre.Lux PowerUnit 2
Free download at www.bredent.com or request by calling +49 (0) 7309 / 872 - 441 REF 000590GB

bre.Lux polymerisation times
see pages 16/17
visio.lign Toolkit

For veneers with permanent plaque resistance and shade stability

The "Finishing Touch"

The visio.lign Toolkit has been designed specifically for the finishing of composites, such as visio.lign veneers, and provides instruments and polishing pastes for a perfect finish.

Composite surfaces like ceramics

The combination of the materials of the visio.lign veneering system and the visio.lign Toolkit results in a surface featuring plaque resistance and shade stability, and its quality and resistance is identical to that of a ceramic material.

Benefits

of the visio.lign Toolkit

• Burs with relief produce smooth surfaces and reduce polishing time
• Prepolishing and high luster polishing pastes are included in the set
• Tools are arranged at different heights to ensure easy access and grasp
• Removable glass pots to avoid drying out of high luster polishing paste
• Pictograms and reference numbers are printed on the tools and stand for better visual control
• Three empty spaces for additional tools
create natural beauty

Veneering composite